

4.1 Let \mathcal{M} be a differentiable manifold and ∇ a connection on \mathcal{M} .

(a) Show that there exists no $(1, 2)$ -type tensor field A on \mathcal{M} with the property that, in any local coordinate system (x^1, \dots, x^n) on \mathcal{M}

$$A_{ij}^k = \Gamma_{ij}^k.$$

Hint: Check how Γ_{ij}^k transforms under changes of coordinates.

(b) Show that the torsion $T : \Gamma(\mathcal{M}) \times \Gamma(\mathcal{M}) \rightarrow \Gamma(\mathcal{M})$ of the connection ∇ , which is defined by

$$T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y],$$

is a tensor field.

(c) Let $\bar{\nabla}$ be a (possibly) different connection on \mathcal{M} . Show that the difference $\nabla - \bar{\nabla} : \Gamma(\mathcal{M}) \times \Gamma(\mathcal{M}) \rightarrow \Gamma(\mathcal{M})$ is also a tensor field. Deduce that, there exists a $(1, 2)$ -type tensor field A such that, in any given local coordinate system (x^1, \dots, x^n) ,

$$A_{ij}^k = \Gamma_{ij}^k - \bar{\Gamma}_{ij}^k$$

where Γ_{ij}^k and $\bar{\Gamma}_{ij}^k$ are the Christoffel symbols of ∇ and $\bar{\nabla}$, respectively.

(d) Show that, if $h_1, h_2 \in C^\infty(\mathcal{M})$, then $h_1 \nabla + h_2 \bar{\nabla}$ is again a connection if and only if $h_1 + h_2 = 1$.

4.2 Let \mathcal{M} be a smooth manifold equipped with a connection ∇ . We can extend the connection ∇ to a map $\nabla : \Gamma(\mathcal{M}) \times \text{Ten}_l^k(\mathcal{M}) \rightarrow \text{Ten}_l^k(\mathcal{M})$ (where $\text{Ten}_l^k(\mathcal{M})$ is the space of tensor fields on \mathcal{M} of type (k, l)) by the requirements that

- ∇ satisfies the Leibniz rule with respect to tensor products, i.e. for all $X \in \Gamma(\mathcal{M})$

$$\nabla_X(f \otimes g) = \nabla_X f \otimes g + f \otimes \nabla_X g,$$

- ∇ commutes with contractions, i.e.

$$\nabla_X(\text{tr}A) = \text{tr}(\nabla_X A).$$

Show that, in any local coordinate chart (x^1, \dots, x^n) , if Γ_{ij}^k are the Christoffel symbols of ∇ then, for every 1-form ω :

$$(\nabla_{\frac{\partial}{\partial x^i}} \omega)_j = \partial_i \omega_j - \Gamma_{ij}^k \omega_k.$$

Moreover, for any (k, l) -tensor field T :

$$\begin{aligned} (\nabla_{\frac{\partial}{\partial x^a}} T)^{i_1 \dots i_k}_{\quad j_1 \dots j_l} &= \partial_a T^{i_1 \dots i_k}_{\quad j_1 \dots j_l} + \Gamma_{ab}^{i_1} T^{b i_2 \dots i_k}_{\quad j_1 \dots j_l} + \dots + \Gamma_{ab}^{i_k} T^{i_1 \dots i_{k-1} b}_{\quad j_1 \dots j_l} \\ &\quad - \Gamma_{aj_1}^b T^{i_1 i_2 \dots i_k}_{\quad b j_2 \dots j_l} - \dots - \Gamma_{aj_l}^b T^{i_1 \dots i_{k-1} i_k}_{\quad j_1 \dots j_{l-1} b}. \end{aligned}$$

4.3 Let \mathcal{M}^n be a differentiable manifold.

(a) Show that, for any $X, Y, Z \in \Gamma(\mathcal{M})$:

$$\mathcal{L}_{[X,Y]}Z = \mathcal{L}_X\mathcal{L}_YZ - \mathcal{L}_Y\mathcal{L}_XZ.$$

Show that the above relation also holds when Z is replaced by any tensor field f of type (k, l) , $k, l \in \mathbb{N}$. (Hint: Check how \mathcal{L}_X behaves on tensor products of the form $f_1 \otimes f_2$.)

(b) Let g be a Riemannian metric on \mathcal{M} . We will say that a vector field $X \in \Gamma(\mathcal{M})$ is a *Killing field* if it generates a flow of *isometries* for g , i.e. if, for any $p \in \mathcal{M}$, the flow map $\Phi : (-\delta, \delta) \times \mathcal{U} \rightarrow \mathcal{M}$ associated to X in a neighborhood \mathcal{U} of p satisfies

$$(\Phi_t)^*(g \circ \Phi_t) = g \quad \text{for all } t \in (-\delta, \delta).$$

Show that

$$\mathcal{L}_Xg = 0.$$

Show also that, in any local system of coordinates, the above equation takes the form

$$g_{ik}\partial_j X^k + g_{jk}\partial_i X^k + \partial_k g_{ij}X^k = 0$$

(Hint: Apply the product rule on the expression $X(g(Y, Z)) = \mathcal{L}_X(g(Y, Z))$ for suitably chosen vector fields Y, Z .)

(c) Show that the space \mathcal{K} of Killing fields on (\mathcal{M}, g) is closed under commutation, i.e. that $[X, Y] \in \mathcal{K}$ if $X, Y \in \mathcal{K}$; thus, \mathcal{K} forms a Lie subalgebra of $\Gamma(\mathcal{M})$.
*(d) We will later prove in class that if there exists a point $p \in \mathcal{M}$ and a local system of coordinates around p such that $X|_p = 0$ and $\partial_i X^j|_p = 0$ for all $i, j = 1, \dots, n$, then X vanishes everywhere on the connected component of \mathcal{M} containing p . Using this fact, can you show that on a connected Riemannian manifold (\mathcal{M}, g) the dimension of \mathcal{K} is at most $\frac{n(n+1)}{2}$? Can you find a basis for the Killing algebra \mathcal{K} on (\mathbb{R}^n, g_E) ?

4.4 Let X, Y be two smooth vector fields on a 2-dimensional manifold \mathcal{M} such that

$$[X, Y] = 0$$

and let $p \in \mathcal{M}$ such that $X|_p, Y|_p$ are not collinear. In this exercise, we will show that there exists a local system of coordinates (y^1, y^2) around p so that $X = \frac{\partial}{\partial y^1}$, $Y = \frac{\partial}{\partial y^2}$.

(a) Show that if \mathcal{U} is a neighborhood of p and $\Phi : (-\delta, \delta) \times \mathcal{U} \rightarrow \mathcal{M}$ is the flow map associated to X , then, for any $t \in (-\delta, \delta)$ and $q \in \mathcal{U}$:

$$d\Phi_{-t}(Y|_{\Phi_t(q)}) = Y|_q.$$

(a) Let $\gamma : I \rightarrow \mathcal{M}$ be an integral curve of the vector field Y such that $\gamma(0) = p$. Consider the map $\Psi : \Omega \subset \mathbb{R}^2 \rightarrow \mathcal{M}$ defined in a neighborhood Ω of 0 defined by the relation

$$\Psi(t, s) = \Phi_t(\gamma(s)).$$

Show that Ψ is a diffeomorphism on its image when restricted to a small neighborhood of 0. Show also that in the coordinate system associated to the chart Ψ^{-1} :

$$X = \frac{\partial}{\partial x^1}, \quad Y = \frac{\partial}{\partial x^2}.$$